Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Bioresour Technol ; 399: 130561, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460558

RESUMO

During the wastewater treatment and resource recovery process by attached microalgae, the chemical oxygen demand (COD) can cause biotic contamination in algal culture systems, which can be mitigated by adding an appropriate dosage of antibiotics. The transport of COD and additive antibiotic (chloramphenicol, CAP) in algal biofilms and their influence on algal physiology were studied. The results showed that COD (60 mg/L) affected key metabolic pathways, such as photosystem II and oxidative phosphorylation, improved biofilm autotrophic and heterotrophic metabolic intensities, increased nutrient demand, and promoted biomass accumulation by 55.9 %, which was the most suitable COD concentration for attached microalgae. CAP (5-10 mg/L) effectively stimulated photosynthetic pigment accumulation and nutrient utilization in pelagic microalgal cells. In conclusion, controlling the COD concentration (approximately 60 mg/L) in the medium and adding the appropriate CAP concentration (5-10 mg/L) are conducive to improving attached microalgal biomass production and resource recovery potential from wastewater.


Assuntos
Microalgas , Microalgas/metabolismo , Cloranfenicol/metabolismo , Análise da Demanda Biológica de Oxigênio , Águas Residuárias , Biofilmes , Biomassa , Nitrogênio/metabolismo
2.
Sci Total Environ ; 919: 170784, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340834

RESUMO

Reclaimed water with nitrogen, phosphorus, and other contaminants may trigger algal blooms during its ecological utilization in replenishing rivers or lakes. However, the effect of reclaimed water on algal growth rates is not well understood. In this study, the growth potentials of algae in terms of Cyanophyta, Chlorophyta, and Bacillariophyta, as well as mixed algae in both regular culture medium and reclaimed water produced from treatment plants in Beijing with similar N and P concentrations, were compared to evaluate whether reclaimed water could facilitate algal growth. In addition, reclaimed water was also sterilized to verify the impact of bacteria's presence on algal growth. The results indicated that most algae grew faster in reclaimed water, among which the growth rate of Microcystis aeruginosa even increased by 5.5 fold. The growth of mixed algae in reclaimed water was not enhanced due to the strong adaptive ability of the community structure. Residual bacteria in the reclaimed water were found to be important contributors to algal growth. This work provided theoretical support for the safe and efficient utilization of reclaimed water.


Assuntos
Cianobactérias , Microcystis , Pequim , Água , Eutrofização , Fósforo/análise , China
3.
Sci Total Environ ; 915: 169822, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38185154

RESUMO

Considering the different fouling characteristics between model foulants and organic components in real reclaimed water, it is of great importance to identify the critical foulants responsible for membrane fouling. This study identified and isolated the fraction with molecular weight (MW) > 100 kDa as the critical foulant in secondary effluent by MW cut-off membrane of 100 kDa with high efficiency. This fraction accounted for 92.2% membrane fouling of raw water, including 28.7%, 29.7% and 33.8% fouling contribution by subfractions with MW between 100-300, 300-500 and > 500 kDa. Specifically, the critical fraction with MW > 100 kDa were mainly distributed in two parts: < 0.22 µm and > 0.45 µm, corresponding to 41.9% and 56.9% fouling contribution of this fraction. Furthermore, both total organic carbon (TOC) and fouling potential of fraction with MW > 100 kDa were monitored, presenting about threefold increase from September to January in next year. Membrane fouling contribution of this critical fraction in raw secondary effluent were mainly distributed in 85∼95% throughout the 5 months, demonstrating its predominant fouling propensity. Moreover, the TOC concentration of fraction with MW > 100 kDa presented distinct positive correlation with the fouling potential of raw secondary effluent (R2 = 0.947), which was promising to be a surrogate for predicting membrane fouling in practical application.

4.
ACS Nano ; 18(4): 2885-2897, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236146

RESUMO

Developing efficient heterogeneous H2O2 decomposition catalysts under neutral conditions is of great importance in many fields such as clinical therapy, sewage treatment, and semiconductor manufacturing but still suffers from low intrinsic activity and ambiguous mechanism understanding. Herein, we constructed activated carbon supported with an Ir-Fe dual-metal-atom active sites catalyst (IrFe-AC) by using a facile method based on a pulsed laser. The electron redistribution in Ir-Fe dual-metal-atom active sites leads to the formation of double reductive metal active sites, which can strengthen the metal-H2O2 interaction and boost the H2O2 decomposition performance of Ir-Fe dual-metal-atom active sites. Ir-Fe dual-metal-atom active sites show a high second-order reaction rate constant of 3.53 × 106 M-1·min-1, which is ∼106 times higher than that of Fe3O4. IrFe-AC is effective in removing excess intracellular reactive oxygen species, protecting DNA, and reducing inflammation under oxidative stress, indicating its therapeutic potential against oxidative stress-related diseases. This study could advance the mechanism understanding of H2O2 decomposition by heterogeneous catalysts and provide guidance for the rational design of high-performance catalysts for H2O2 decomposition.

5.
Environ Pollut ; 341: 122937, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977362

RESUMO

Ferrate (Fe(VI)) is an emerging green oxidant which has great potential and prospect in water disinfection. However, the effects of water quality on Fe(VI) disinfection remain unclear. This study systematically investigated the effects of pH, organic matters and inorganic ions on Fe(VI) inactivation of Escherichia coli (E. coli). Results showed that pH was the dominant influencing factor and the inactivation efficiency as well as inactivation rate constant was negatively correlated with pH (6.8-8.4). HFeO4- was found to be the critical Fe(VI) species contributing to the inactivation. As for organic matters (0-5 mg C/L), protein and humic acid significantly accelerated the decay of Fe(VI) and had negative effects on the inactivation efficiency, while polysaccharide slightly inhibited the inactivation due to the low reactivity with Fe(VI). As for inorganic ions, bicarbonate (0-2 mM) could stabilize Fe(VI) and decreased the inactivation rate constant, while ammonium (0-1 mM) had little effect on the inactivation of E. coli. In addition, the comprehensive effects of water quality on Fe(VI) disinfection in actual reclaimed water were also evaluated. The inactivation of E. coli in secondary effluent and denitrifying effluent was found to be inhibited compared to that in phosphate buffer. Overall, this study is believed to provide valuable information on Fe(VI) disinfection for water and wastewater treatment practices.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Escherichia coli , Qualidade da Água , Ferro/química , Oxidantes/química , Purificação da Água/métodos , Oxirredução , Poluentes Químicos da Água/análise
6.
Bioresour Technol ; 393: 130143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042434

RESUMO

Nitrogen (N) and phosphorus (P) absorbed by algae in the suspended-solid phase photobioreactor (ssPBR) have emerged as an efficient pathway to purify the effluent of wastewater treatment plants (WWTPs). However, the key operational parameters of the ssPBR need to be optimized. In this study, the stability of the system after sequential batch operations and the efficiency under various influent P concentrations were evaluated. The results demonstrated that the ssPBR maintained a high N/P removal efficiency of 96 % and 98 %, respectively, after 5 cycles. When N was kept at 15 mg/L and P ranged from 1.5 to 3.0 mg/L, the system yielded plenty of algae products and guaranteed the effluent quality that met the discharge standards. Notably, the carriers were a key contributor to the high metabolism of algae and high performance. This work provided theoretical ideas and technical guidance for effluent quality improvement in WWTPs.


Assuntos
Microalgas , Purificação da Água , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotobiorreatores , Purificação da Água/métodos , Biomassa , Microalgas/metabolismo
7.
Water Res ; 249: 120890, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016222

RESUMO

Emerging electrochemical disinfection techniques provide a promising pathway to the biofouling control of reverse osmosis (RO) process. However, the comparative effectiveness and mechanism of it under flow-through conditions with low voltage remains unclear. This study investigated the effect of a flow-through electrode system (FES) with both direct current (DC) and alternating pulse current (AC) on RO biofouling control compared with chlorine disinfection. At the initial stage of biofouling development, the normalized flux of AC-FES (67% on Day 5) was saliently higher than the control group (56% on Day 5). Subsequently, the normalized fluxes of each group tended similarity in their differences until the 20th day. After mild chemical cleaning, the RO membrane in the AC-FES group reached the highest chemical cleaning efficiency of 58%, implying its foulant was more readily removable and the biofouling was more reversible. The biofouling layer in the DC-FES group was also found to be easily cleanable. Morphological analysis suggested that the thickness and compactness of the fouling layers were the major reasons for the fouling behavior difference. The abundance of 4 fouling-related abundant genera (>1%), which were Pseudomonas, Thiobacillus, Sphingopyxis, and Mycobacterium exhibited a salient correlation with the biofouling degree. The operating cost of FES was also lower than that of chlorine disinfection. In summary, AC-FES is a promising alternative to chlorine disinfection in RO biofouling control, as it caused less and easy-cleaning biofouling layer mainly due to two advantages: a) reducing the regrowth potential after disinfection of the bacteria, leading to alleviated initial fouling, (b) reshaping the microbial community to those with weaker biofilm formation capacity.


Assuntos
Incrustação Biológica , Purificação da Água , Águas Residuárias , Incrustação Biológica/prevenção & controle , Cloro , Membranas Artificiais , Osmose , Purificação da Água/métodos
8.
Environ Sci Technol ; 57(49): 20893-20904, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032700

RESUMO

Ferrate (Fe(VI)) is an emerging green disinfectant and has received increasing attention nowadays. This study conducted systematic analyses of Fe(VI) disinfection on six typical bacteria in different water matrices. The results showed that Fe(VI) was more effective in inactivating Gram-negative (G-) bacteria than Gram-positive (G+) bacteria, and the disinfection performance of Fe(VI) was better in a phosphate buffer than that in a borate buffer and secondary effluent. The inactivation rate constants of G- bacteria were significantly higher than those of G+ bacteria. The cell membrane damage of G- bacteria was also more severe than that of G+ bacteria after Fe(VI) treatment. The cell wall structure, especially cell wall thickness, might account for the difference of the inactivation efficiency between G- bacteria and G+ bacteria. Moreover, it is revealed that Fe(VI) primarily reacted with proteins rather than other biological molecules (i.e., phospholipids, peptidoglycan, and lipopolysaccharide). This was further evidenced by the reduction of bacterial autofluorescence due to the destruction of bacterial proteins during Fe(VI) inactivation. Overall, this study advances the understanding of Fe(VI) disinfection mechanisms and provides valuable information for the Fe(VI) application in water disinfection.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Água , Purificação da Água/métodos , Ferro/química , Poluentes Químicos da Água/análise , Bactérias , Oxirredução
9.
Nat Commun ; 14(1): 5734, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714847

RESUMO

Water disinfection is conventionally achieved by oxidation or irradiation, which is often associated with a high carbon footprint and the formation of toxic byproducts. Here, we describe a nano-structured material that is highly effective at killing bacteria in water through a hydrodynamic mechanism. The material consists of carbon-coated, sharp Cu(OH)2 nanowires grown on a copper foam substrate. We show that mild water flow (e.g. driven from a storage tank) can efficiently tear up bacteria through a high dispersion force between the nanotip surface and the cell envelope. Bacterial cell rupture is due to tearing of the cell envelope rather than collisions. This mechanism produces rapid inactivation of bacteria in water, and achieved complete disinfection in a 30-day field test. Our approach exploits fluidic energy and does not require additional energy supply, thus offering an efficient and low-cost system that could potentially be incorporated in water treatment processes in wastewater facilities and rural communities.


Assuntos
Desinfecção , Hidrodinâmica , Bactérias , Carbono , Membrana Celular
10.
Water Res ; 244: 120531, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659185

RESUMO

With the widespread use of chlorine disinfection, chlorine-resistant bacteria (CRB) in water treatment systems have gained public attention. Bacterial chlorine resistance has been found positively correlated with extracellular polymeric substance (EPS) secretion. In this study, we selected the most suitable CRB controlling method against eight bacterial strains with different chlorine resistance among chloramine, ozone, and ultraviolet (UV) disinfection, analyzed the resistance mechanisms, clarified the contribution of EPS to disinfection resistance, and explored the role of carbon source metabolism capacity. Among all the disinfectants, UV disinfection showed the highest disinfection capacity by achieving the highest average and median log inactivation rates for the tested strains. For Bacillus cereus CR19, the strain with the highest chlorine resistance, 40 mJ/cm2 UV showed a 1.90 log inactivation, which was much higher than that of 2 mg-Cl2/L chlorine (0.67 log), 2 mg-Cl2/L chloramine (1.68 log), and 2 mg/L ozone (0.19 log). Meanwhile, the UV resistance of the bacteria did not correlate with EPS secretion. These characteristics render UV irradiation the best CRB controlling disinfection method. Chloramine was found to have a generally high inactivation efficiency for bacteria with high chlorine-resistance, but a low inactivation efficiency for low chlorine-resistant ones. Although EPS consumed up to 56.7% of chloramine which an intact bacterial cell consumed, EPS secretion could not explain chloramine resistance. Thus, chloramine is an acceptable CRB control method. Similar to chlorine, ozone generally selected high EPS-secreting bacteria, with EPS consuming up to 100% ozone. Therefore, ozone is not an appropriate method for controlling CRB with high EPS secretion. EPS played an important role in all types of disinfection resistance, and can be considered the main mechanism for bacterial chlorine and ozone disinfection resistance. However, as EPS was not the main resistance mechanism in UV and chloramine disinfection, CRB with high EPS secretion were inactivated more effectively. Furthermore, carbon source metabolism was found related to the multiple resistance of bacteria. Those with low carbon source metabolism capacity tended to have higher multiple resistance, especially to chlorine, ozone, and UV light. Distinctively, among the tested gram-negative bacteria, in contrast to other disinfectants, chloramine resistance was negatively correlated with EPS secretion and positively correlated with carbon source metabolism capacity, suggesting a special disinfection mechanism.


Assuntos
Desinfetantes , Ozônio , Cloro/farmacologia , Cloraminas/farmacologia , Desinfecção , Matriz Extracelular de Substâncias Poliméricas , Halogênios , Bactérias , Desinfetantes/farmacologia , Carbono , Cloretos
11.
Bull Entomol Res ; 113(5): 645-657, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37578039

RESUMO

Galls function as provide shelter for gall inducers, guarding them against their natural enemies. Previous research has illuminated the interactions between galls, gall inducers, and their corresponding parasitoids within various caltrop plants. However, less is known about these relationships within Nitraria sibirica, particularly regarding the efficacy of parasitism. Therefore, this study aimed to identify the morphometric relationships among the swollen galls, gall inducers, and their parasitoids. Two species of gall inducers and three species of parasitoids were obtained from the swollen galls of N. sibirica. The correlations of the parasitization indexes, the lifespan of gall inhabitants, and temperature and the morphometric relationships between the galls and their inhabitants were analyzed. The dominant gall inducer identified was Contarinia sp. (Diptera: Cecidomyiidae). Furthermore, it was observed that three solitary parasitoids attacked Contarinia sp. in the swollen galls, with only Eupelmus gelechiphagus acting as an idiobiont ectoparasitoid. The dominant parasitoids were Platygaster sp. and Cheiloneurus elegans at sites 1 and 2, respectively, with Platygaster sp. displaying greater abundance than C. elegans in the swollen galls. The lifespan of the gall inhabitants shortened gradually as the temperature increased. Moreover, the optimal number of gall chambers ranged from two to four per swollen gall with maximized fitness, which can be considered the optimal population density for the gall inducer Contarinia sp. Morphometric analysis exhibited a strong linear correlation between gall size and chamber number or the number of gall inhabitants, as well as a weak correlation between gall size and body size of the primary inhabitants of swollen galls. Our results highlight the importance of the biological investigation of parasitoids and gall inducers living in closed galls with multiple chambers and may pave the way for potential application in biological control.


Assuntos
Dípteros , Himenópteros , Animais , Tumores de Planta , Caenorhabditis elegans , Biologia
12.
Water Res ; 243: 120435, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536248

RESUMO

Electroneutral carbonyls (ENCs) with low molecular weights (e.g., aldehydes and ketones) are recalcitrant to single water treatment process to achieve ultralow concentration. Residual ENCs are present in reverse osmosis permeate and pose risks to human health during potable use or industrial application in manufacturing processes. Herein, a combined vacuum-UV (VUV) oxidation and anion-exchange resin (AER) adsorption method was developed to treat the ENCs and reduce total organic carbon (TOC) to an ultralow concentration (< 5 µg/L) with high efficiency and at low cost. VUV-AER was 2.1-2.4 times more efficient than VUV alone for the removal of TOC. VUV oxidized the ENCs to electronegative carboxylic acids, which were adsorbed by the AER through electrostatic interactions and hydrogen bonding. When the VUV fluence was lower than 643 mJ cm-2, the AER could not achieve ultralow TOC removal of ENCs. The treat capacity of 1500-2900 valid bed volume (BVs) was achieved after increasing the VUV fluence to 1929 mJ cm-2. The AER could more efficiently adsorb carboxylic acids that contained more carboxylic groups or shorter carbon chain. Acetate was identified as the primary breakthrough product at relatively low VUV fluence, and oxalate was the main byproduct at relatively high VUV fluence. A mathematical model to predict TOC breakthrough was developed considering the VUV-oxidation kinetics and the AER breakthrough curve. The model was used to optimize the method to maximize TOC removal and minimize energy consumption. These results imply that VUV-AER is technically feasible and economically applicable to eliminate recalcitrant ENCs to ultralow concentration for the production of water requires high quality (e.g., potable water or electronic-grade ultrapure water).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Vácuo , Adsorção , Raios Ultravioleta , Oxirredução , Purificação da Água/métodos , Ácidos Carboxílicos , Carbono , Ânions
13.
Sci Total Environ ; 904: 166297, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595918

RESUMO

With the increasingly serious shortage of water resources globally, it has been paid more attention on how to secure the biosafety of reclaimed water and other non-traditional water sources. However, the 3 most applied disinfection technics, which are chlorine, ultraviolet (UV), and ozone disinfection, all have their disadvantages of selecting undesired bacteria and low energy utilization efficiency. Electrode disinfection is a promising solution, but the current electrode disinfection process still needs to be optimized in terms of the use conditions of the configuration reactivation. In this paper, we built a flow electrode system (FES). To evaluate the disinfection techniques more precisely, we isolated ultraviolet-resistant bacteria (URB) bacteria from the water of the full-scale water plant and tested the disinfection performance of FES and UV. The inactivation rate, reactivation potential, and energy consumption were analyzed. FES could inactivate 99.99 % of the URB and cause irreversible damage to the residual bacteria. FES could make all bacteria strains apoptosis in the subsequent 24 h of storage after alternating pulse current (APC) treatment, 3 V, within 27.7 s. Besides, the energy consumption of FES is about 2 orders lower than that of UV disinfection under the same inactivation rate. In summary, APC-FES is an efficient and low-carbon alternative for future water disinfection, which could achieve the ideal disinfection effect of a high inactivation rate, no reactivation, and low energy consumption.


Assuntos
Purificação da Água , Água , Carbono , Bactérias , Desinfecção/métodos , Purificação da Água/métodos , Cloro/farmacologia , Eletrodos , Raios Ultravioleta
14.
Water Res ; 243: 120373, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494748

RESUMO

The ozone-ultraviolet (UV)-chlorine process is a highly effective method of disinfection in water reuse system, but currently still lacks precise quantification and accurate control. It is difficult to determine the dosage of each disinfectant because of the complex interactions that occur between disinfection units and the complicated mathematical calculation required. In this study, we proposed a dosage optimization model for ozone-UV-chlorine synergistic disinfection process. The model was able to identify the cost-effective doses of the disinfectants under the constraints of microbial inactivation, decolorization, and residual chlorine retention requirements. Specifically, the simulation of microbial inactivation rates during synergistic disinfection process was accomplished through quantification of the synergistic effects between disinfection units and the introduction of enhancement coefficients. In order to solve this optimization model rapidly and automatically, a MATLAB-based software program with graphical user interface was developed. This software consisted of calibration unit, prediction unit, assessment unit, and optimization unit, and was able to simulate synergistic ozone-UV-chlorine process and identify the optimal dose of ozone, UV, and chlorine. Validation experiments revealed good agreements between the experimental data and the results calculated by the developed software. The developed software is believed to help the water reclamation plants improve disinfection efficiency and reduce the operational costs of synergistic disinfection processes.


Assuntos
Desinfetantes , Ozônio , Purificação da Água , Desinfecção/métodos , Cloro , Água , Purificação da Água/métodos , Software , Raios Ultravioleta
15.
Sci Total Environ ; 896: 165199, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37391159

RESUMO

Ozone and chlorine are the most widely used disinfectants for water and wastewater disinfection. They play important role in microbial inactivation but could also pose a considerable selection effect on the microbial community of reclaimed water. Classical culture-based methods that rely on the assessment of conventional bacterial indicators (e.g., coliform bacteria) could hardly reflect the survival of disinfection residual bacteria (DRB) and hidden microbial risks in disinfected effluents. Hence, this study investigated the shifts of live bacterial community during ozone and chlorine disinfection in three reclaimed waters (i.e., two secondary effluents and one tertiary effluent), adopting Illumina Miseq sequencing technology in combination with a viability assay, propidium monoazide (PMA) pretreatment. Notably, statistical analyses of Wilcoxon rank-sum test confirmed the existance of distinct differences in bacterial community structure between samples with or without PMA pretreatment. On the phylum level, Proteobacteria commonly dominated in three undisinfected reclaimed waters, while ozone and chlorine disinfection posed varied effects on its relative abundance among different influents. On the genus level, ozone and chlorine disinfection significantly changed the bacterial composition and dominant species in reclaimed waters. Specifically, the typical DRB identified in ozone disinfected effluents were Pseudomonas, Nitrospira and Dechloromonas, while for chlorine disinfected effluents, Pseudomonas, Legionella, Clostridium, Mycobacterium and Romboutsia were recognized as typical DRB, which call for much attention. The Alpha and Beta diversity analysis results also suggested that different influent compositions greatly affected the bacterial community structure during disinfection processes. Since the experiments in present study were conducted in a short period and the dataset was relatively limited, prolonged experiment under different operational conditions are needed in future to illustrate the potential long-term effects of disinfection on the microbial community structure. The findings of this study could provide insights into microbial safety concern and control after disinfection for sustainable water reclamation and reuse.


Assuntos
Desinfetantes , Ozônio , Purificação da Água , Desinfecção/métodos , Cloro/farmacologia , Ozônio/farmacologia , Desinfetantes/farmacologia , Bactérias , Água , Cloretos , Purificação da Água/métodos
16.
Environ Pollut ; 333: 122007, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302789

RESUMO

Disinfection is essential in water and wastewater treatment process as a guarantee for microbial safety. This study systematically investigated: (i) the inactivation characteristics of bacteria widely existed in water, including Gram-negative bacteria (Escherichiacoli) and Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis spores), by sequential UV and chlorine disinfection processes (UV-Cl and Cl-UV), simultaneous UV and chlorine disinfection process (UV/Cl); and (ii) the disinfection mechanisms on different bacteria. The combination of UV and chlorine disinfection could inactive bacteria at lower doses, but showed no synergistic effect on E. coli. Contrarily, disinfection results indicated that UV/Cl performed an obvious synergistic effect on highly disinfectant-resistant bacteria (e.g. S. aureus and B. subtilis spores). Specifically, UV/Cl at the UV dose of 9 mJ/cm2 and chlorine dose of 2 mg-Cl/L could inactivate S. aureus completely. Moreover, the effectiveness of UV/Cl on the removal of indigenous bacteria in actual water conditions was also confirmed. In short, the study provides significant theoretical and practical implications for ensuring microbial safety during water treatment and use.


Assuntos
Desinfecção , Purificação da Água , Desinfecção/métodos , Cloro/farmacologia , Antibacterianos , Escherichia coli , Staphylococcus aureus , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Bactérias , Purificação da Água/métodos , Raios Ultravioleta
17.
Zootaxa ; 5258(3): 342-350, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37044590

RESUMO

The malthusi group of Coccophagus Westwood (Hymenoptera: Aphelinidae) is characterized by a densely setose mesoscutellum with the posterior apical pair of setae distinctly longer than others. In the present paper, two new species of the malthusi group are described from China: Coccophagus infuscatus sp. nov. and Coccophagus bandus sp. nov., both reared from species of Coccidae (Hemiptera: Sternorrhyncha). The type specimens are housed in Institute of Zoology, Chinese Academy of Sciences (IZCAS), Beijing, China.


Assuntos
Hemípteros , Himenópteros , Animais , China
18.
Water Res ; 235: 119862, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924555

RESUMO

Pharmaceutical and personal care products (PPCPs) are frequently detected in water bodies and have potential risks to human health and the ecosystem. The degradation of eight structurally diverse PPCPs by ammonia/chlorine was systematically investigated in this study. Compared with chlorination, ammonia/chlorine markedly enhanced PPCP degradation, and the degradation efficiencies of most PPCPs were greater than 70%. Tert-butanol strongly suppressed PPCP degradation, while bicarbonate suppressed it moderately, suggesting the importance of ClO⋅and ⋅CO3- in PPCP degradation. In neutral conditions, PPCP degradation was mainly attributed to ⋅OH, with its contribution ranging from 74% to 100% at a Cl2/N molar ratio of 1.6. Regarding the effect of natural organic matter, atrazine and primidone were inhibited the most, while carbamazepine (CBZ), metoprolol (MTP), and atenolol (ATN) were affected the least. PPCP degradation was suppressed in reclaimed water; the degradation of CBZ, MTP, and ATN was suppressed the least, with degradation efficiencies of 77.1%-85.4%, 75.1%-77.1%, and 64.6%-68.8%, respectively. Furthermore, compared with chlorination, fewer volatile halogenated byproducts were formed in reclaimed water when using the ammonia/chlorine process, and the concentration of each byproduct formed by ammonia/chlorine was less than 10 µg/L. This study suggests the feasibility of using ammonia/chlorine oxidation to degrade PPCPs in reclaimed water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Cloro , Amônia , Ecossistema , Raios Ultravioleta , Água , Carbamazepina , Cloretos
19.
Environ Int ; 173: 107818, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36812804

RESUMO

In regard to membrane-based technologies of wastewater reclamation, the reported key foulants were faced with dilemma that they could not be effectively separated and extracted from reclaimed water for thorough investigation. In this study, the crucial foulants were proposed as "critical minority fraction (FCM)", representing the fraction with molecular weight (MW) > 100 kDa which could be easily separated by physical filtration using MW cut-off membrane of 100 kDa with fairly high recovery ratio. FCM with low dissolved organic carbon (DOC) concentration (∼1 mg/L) accounted for less than 20% of the total DOC in reclaimed water, while contributed to more than 90% of the membrane fouling, and thus FCM could be considered as a "perfect criminal" causing membrane fouling. Furthermore, pivotal fouling mechanism was attributed to the significant attractive force between FCM and membranes, which led to severe fouling development due to the aggregation of FCM on membrane surface. Fluorescent chromophores of FCM were concentrated in regions of proteins and soluble microbial products, with proteins and polysaccharides accounted for 45.2% and 25.1% of the total DOC, specifically. FCM was further fractionated into six fractions, among which hydrophobic acids and hydrophobic neutrals were the dominant components in terms of DOC content (∼80%) as well as fouling contribution. Regarding to these pronounced properties of FCM, targeted fouling control strategies including ozonation and coagulation were applied and proved to achieve remarkable fouling control effect. High-performance size-exclusion chromatography results suggested that ozonation achieved distinct transformation of FCM into low MW fractions, while coagulation removed FCM directly, thus leading to effective fouling alleviation. Therefore, the investigation of the critical foulants was expected to help glean valuable insight into the fouling mechanism and develop targeted fouling control technologies in practical applications.


Assuntos
Ozônio , Purificação da Água , Ultrafiltração , Água , Membranas Artificiais , Purificação da Água/métodos , Matéria Orgânica Dissolvida , Ozônio/química
20.
Sci Total Environ ; 866: 161372, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36621502

RESUMO

Chlorine disinfection has become the most widely applied and indispensable technology in wastewater treatment and reuse to mitigate microbial risk and guarantee water safety. However, owing to complexities and high concentrations of contaminants in reclaimed water, rapid evaluation of chlorine disinfection efficacy is a crucial but challenging issue. Based on intensive experimental and statistical analyses, this study has established kinetic models and potential surrogates for rapid indication of the inactivation of microbial indicators and opportunistic pathogens during chlorine disinfection in different reclaimed waters. Overall, the constructed Selleck models performed very well to simulate log removal values (LRVs) of fecal coliforms, Pseudomonas aeruginosa and heterotrophic plate counts in all reclaimed water samples (R2 = 0.877-0.990). Moreover, total and Peak A fluorescence intensity as well as fluorescence integral intensities in Regions II and IV were found to have high response sensitivities during the chlorination process. Nevertheless, their effectiveness to act as potential surrogates of LRVs of microbial indicators needs to be further validated. The results from this study can provide valuable information on microbial safety surveillance of disinfection toward sustainable and long-term water reuse.


Assuntos
Desinfecção , Purificação da Água , Desinfecção/métodos , Cloro , Água , Purificação da Água/métodos , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA